	Name:	
Math 4933/6933 Section 01	Practice Final Exam	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution, you will receive little or no credit!

1. Let (S, d) be a metric space. Recall the distance between two subsets $E, F \subseteq S$ is

$$d(E,F) = \inf_{x \in E} d(x,F) \; .$$

Let $F, K \subseteq S$ be closed and compact sets respectively and $F \cap K = \emptyset$. Prove that d(F, K) > 0.

2. Let (S_1, d_1) and (S_2, d_2) be two compact metric spaces. Prove that $S_1 \times S_2$ is compact.

3. Let X be a normed vector space and $\mathcal{F} \subseteq C(X)$ an equicontinuous family of functions. Prove that $\overline{\mathcal{F}}$ is equicontinuous.

4. Let X be normed vector space and $\{f_n\} \subseteq C(X)$ is an equicontinuous sequence. Prove that if $f_n \to f$ pointwise on X, then $f_n \to f$ uniformly on X.

5. Let P[a, b] be the space of polynomials on [a, b]. Define $P_0[a, b]$ by

$$P_0[a,b] = \{f \in P[a,b] : f(a) = 0\}$$
.

Prove that $P_0[a, b]$ is an algebra. Is this set dense in C[a, b]? Does $P_0[a, b]$ separate the points of [a, b]?

6. Let P[a, b] be the space of polynomials on [a, b]. Define $P_1[a, b]$ by

$$P_1[a,b] = \{f \in P[a,b] : f(a) = f(b) = 0\}$$
.

Prove or disprove that $P_1[a, b]$ separates the points of [a, b].

7. Let $f : \mathbb{R} \to \mathbb{R}$ be continuously differentiable. Define $F : C[a, b] \to \mathbb{R}$ by $F(\varphi) = f(\varphi(a))$. Prove that F is differentiable at every $\varphi \in C[a, b]$.

8. Let $P: C^2[0,1] \to C[0,1]$ be given by $P\varphi = \varphi'' - e^{\varphi}$. Compute $dP(\varphi)$.